#### ARKIV FÖR KEMI Band 2 nr 37

Communicated 24 May 1950 by ARNE WESTGREN and PERCY QUENSEL

## Mixed oxides with layer lattices

### III. Structure of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>

By BENGT AURIVILLIUS.

With 4 figures in the text

X ray studies on the compounds  $CaBi_2Nb_2O_9$  (1) and  $Bi_4Ti_3O_{12}$  (2) have shown that the comparatively complicated chemical formulae of these compounds can be explained by simple layer structures being built up from  $Bi_2O_2^{2+}$  layers and perowskite layers. The unit cells are pictured schematically in Figs. 1 a and 1 c. It was found both for  $CaBi_2Nb_2O_9$  and  $Bi_4Ti_3O_{12}$  that the symmetry was body-centered pseudo-tetragonal and that the length of the a axes had the same value (3.8 Å) while the length of the c-axis was 25 Å for  $CaBi_2Nb_2O_9$  and 33 Å for  $Bi_4Ti_3O_{12}$ . In both structures the heavy atoms form approximately a "substructure" with a smaller body-centered tetragonal cell with a = 3.8 Å and c = 25/5 Å for  $CaBi_2Nb_2O_9$  or c = 33/7 Å for  $Bi_4Ti_3O_{12}$ .

The  $\mathrm{Bi_2O_2}$  layers and perowskite layers lie perpendicular to the c-axis. Similar layer structures have been found for a number of bismuth oxicompounds (3,4,5). The common structural element in all these compounds is quadratic  $\mathrm{Bi_2O_2}$  layers between which halides or certain radicals are inserted. This explains the fact that the a axes of all these compounds are of about the same length. For a

survey see (5).

For the CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> type each perowskite layer has the composition (CaNb<sub>2</sub>O<sub>7</sub>)<sub>n</sub> and the height of the layer is equal to four distances Nb—O or approximately to the height of two E2<sub>1</sub> (perowskite) unit cells (see Fig. 1 a). A compound with a somewhat similar structure has previously been investigated by LAGER-CRANTZ and SILLÉN (5). In this structure (see Fig. 1 b), beyerite CaBi<sub>2</sub>O<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>, the point positions corresponding to the positions of the Nb atoms in CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> are occupied by "rotating" CO<sub>3</sub> groups.

For the Bi<sub>2</sub>Ti<sub>3</sub>O<sub>12</sub> type the perowskite layers have the composition (Bi<sub>2</sub>Ti<sub>3</sub>O<sub>10</sub>)<sub>n</sub> and the height of the layer is equal to six distances Ti—O or approximately

to the height of three E21 unit cells.

The general formula for a compound built up in a way similar to CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>3</sub> but where the height of the perowskite layer enclosed between a pair of Me<sub>2</sub>O<sub>2</sub> layers is equal to the height of m E2<sub>1</sub> cells, will be:

 $Me_2O_2$  ( $Me'_{m-1}R_mO_{8m+1}$ ). Me, Me': Ca, Sr, Ba Bi (K + Bi)/2 etc.

R: Ti, Nb, Ta (Nb + Ti)/2 etc.

### B. AURIVILLIUS, Mixed oxides with layer lattices. III



Fig. 1. Schematical pictures of the structures af a. CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>2</sub> b. CaBi<sub>2</sub>O<sub>2</sub>(CO<sub>2</sub>)<sub>2</sub> and c. Bi<sub>4</sub>Ti<sub>2</sub>O<sub>12</sub>. The vertical lines indicate the lines 0 0 z and ½ ½ z in the unit cells. A denotes perowskitic (E2<sub>1</sub>) regions in the structures.

It seemed of interest to investigate whether compounds could be synthesized with m = 4. The present investigation shows that structures of the above type with m = 4 exist.

Mixtures of  $\mathrm{Bi_2O_3}$ ,  $\mathrm{BaCO_3}$  and  $\mathrm{TiO_2}$ , corresponding to the composition  $\mathrm{BaBi_4Ti_4O_{15}}$  were prepared and heated to  $1100^\circ\mathrm{C}$ . Single crystals, thin plates, were picked out and Weissenberg photographs were taken. These could be interpreted by means of a body-centered tetragonal cell with a=3.86 Å and c=41.7 Å. The strong lines of the powder photographs (taken from preparations heated to  $900^\circ\mathrm{C}$  (Au crucible) or  $1100^\circ\mathrm{C}$  (Pt crucible) were easily identified since they could all be described with the aid of the "sub-lattice" (a=3.86 c=41.7/9). If the c axis were 9 fold even the weak lines could be explained (Table 3). In this way the cell edges were found to be a=3.864 Å and c=41.76 Å. The observed density was 7.2, which agrees fairly well with the assumption of 2 formula units/unit cell (calculated density 7.49).

The Weissenberg photographs registered 0 k l, 1 k l, h h l and h, h + 1, l. In the Weissenberg and powder photographs there was nothing to indicate a lower Laue symmetry than  $D_4 - 4/mmm$ . Except for the extinctions due to the bodycentering, h k l occurring only for h + k + l = 2n, no systematic extinctions were found, which is characteristic of the space groups  $C_{4v}^0$ ,  $D_{2d}^{0,11}$  and  $D_{4d}^{17}$ . Fig. 2



Fig. 2. Patterson



Fig. 3. Three dimmaterial was used the amplitudes are The ver

ARKIV FÖR KEMI. Bd 2 nr 37



Fig. 2. Patterson Harker function of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> along 00 z. All observed reflexions were used for this calculation.



Fig. 3. Three dimensional Fourier cut along 0.0z for BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>. The same intensity material was used as for the Patterson Harker analysis pictured in Fig. 2. The signs of the amplitudes are the same as those obtained in the structure factor calculation for Table 2. The vertical arrows correspond to the  $z_{\rm Ti}$  values actually assumed.

O<sub>3</sub>)<sub>2</sub> and 4 denotes

thesized ve type

position
1 plates,
ould be
A and
preparaly iden" (a =
bould be
3.864 Å
ell with

i, l. In a lower ne bodyons were Fig. 2 B. AURIVILLIUS, Mixed oxides with layer lattices. III.

shows the Patterson Harker function along 0.0z. For all observed reflexions the  $F^2$  values were estimated from:  $F^2 \approx I_{\text{obs.}} \frac{\sin 2\theta}{1 + \cos^2 2\theta}$ . As expected large peaks appear at  $z \approx 1/9$  2/9 3/9 and 4/9.

It is interesting to compare the cell dimensions found above with the ones which might be expected if the compound  $BaBi_4Ti_4O_{15}$  is assumed to have a structure similar to that of  $CaBi_2Nb_2O_9$  but with m=4. In this case the a axis would have about the same value as found. The length of the c axis might be estimated in the following way: The c axis of  $Bi_3NbTiO_9$  (m=2 see (1)) is 25.11 Å; the value for  $Bi_4Ti_3O_{12}$  (m=3 see (2)) is 32.83, the difference is 7.72. If twice this value is added to the c axis of  $BaBi_2Nb_2O_9$  (m=2) the value 41.0 Å is obtained. The value actually found was, as mentioned above, 41.76 Å.

From the composition, cell dimensions, and crystal symmetry it seemed a priori probable that the structure of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> was the one we anticipated. Therefore, the parameters were worked out with the aid of the parameters found for

Table 1

Weissenberg photographs of  $BaBi_4Ti_4O_{15}$ . Cu  $K_\alpha$  radiation. For zero order photographs the regions of maximum absorption (see Wells (6)) are indicated by dotted lines. The intensities of 101, 103 and 105 have been taken from a zero order photograph, those of 1027—1049 from a first order photograph rotated around (100).

| I.                     | 001            | 201            | 221              | 401      | 111          | 311        | 3 3 1 |
|------------------------|----------------|----------------|------------------|----------|--------------|------------|-------|
|                        |                |                | r1900            |          |              | · <u> </u> | vw    |
| E                      |                | _              | vw               |          | *****        |            | vw    |
| 2<br>4<br>6<br>8<br>10 |                |                |                  |          | VW<br>W      | _          | vvw   |
| 6                      | vw             | VVW !          | <b>VW</b>        |          |              | vvw        | vvw   |
| 8                      | m              | · m            | w                |          | m            |            | 1     |
| 10                     | m              | m.             | W                |          | st           | vw.        | w     |
| 12                     | w              | vvw            | vw               |          | vvw          |            | w     |
| 14                     | w              | ·              | vvw_             | _        | w            | _          |       |
| 16<br>18               | st             | , w            | m <sup>+</sup> . | vvw      | m            | AAM.       | m     |
| 18                     | vst            | m.             | st               | w        | vst          | w          | st    |
| 20                     | st             | ) w            | W                | AAM      | w            |            | · - · |
| 22                     | m <sup>+</sup> | vvw            | vvw              | VVW      | vw           | _          | vw    |
| 24                     | ·w             | vvw            | vvw              | vvw      | vw           |            | w     |
| 26                     | w              | VVW            |                  |          | w            | vvw        | w     |
| 28                     | st             | m <sup>+</sup> | ₩+               | m        | m            | vw         | j     |
| 30                     | W              |                | W                | m+       |              | vw         |       |
| 32                     | w              | w<br>w+        | l vor            |          | m            | w          |       |
| 34                     | m              | m              | m <sup>+</sup>   |          | _ m          | m          |       |
| 36                     | st             | st             | st               | 1        | m+           | · mo.      |       |
| 36<br>38               | vvw            |                |                  | , '      | w            | _          | -     |
| 40                     | st             | st             | st               |          | st           | st         |       |
| 42                     | vvw            |                |                  |          | vw           |            |       |
| 44                     |                | _              | ŀ                | 1        |              |            |       |
| 46                     | m              | m              |                  |          | st           |            | 1     |
| 48                     | i w            | m              | 1                |          | st           | [          |       |
| 50                     | ₩*             |                |                  |          | m            | l          | ļ     |
| 52                     | ₩+             | 1              | <b>!</b>         | •        | _            | ]          |       |
|                        | 1 "            | <u> </u>       | 1                | <u>'</u> | <del>!</del> | <u> </u>   | ·     |

Bi<sub>3</sub>NbTiC to be: 2 The pc 4 Ti in :  $\frac{1}{2}0(\frac{1}{2}-z_3)$ 4 O in  $\pm z_1 \approx 1/9$ 

These at same values ones only i be an incorr

The par of the Ba (000 + 00)Agreement  $\pm 0.004$ ,  $z_4$  lexions

l large

the a the a c axis see (1)) ence is above,

a priori Thereund for

· photodotted :o order

331

VW

vw

ARKIV FÖR KEMI. Bd 2 nr 37

Table 1 (cont.)

Weissenberg photographs of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>. Cu K<sub>a</sub> radiation.

| ı           | 101              | 211            | 301                                           | 321  | 411            |
|-------------|------------------|----------------|-----------------------------------------------|------|----------------|
| ,           |                  | w              | vw                                            | vw   | _              |
| 1 1         | m                |                | \ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u> |      |                |
| 1<br>3<br>5 | vvw              | VVW            |                                               | 7VW  |                |
| 1 5         | VVW              | vw             | <b>vvw</b>                                    | w    |                |
| 7           | w                | V W            |                                               |      | 700            |
| 9           | vst              | st<br>—        | m                                             | m.   | <b>w</b>       |
| 11          |                  | _              |                                               |      |                |
| 13          | w_               | -              |                                               |      | _              |
| 15          | w <sup>+</sup>   |                | VVW                                           |      |                |
| 17          | m                | VVW            | vvw                                           |      |                |
| 19          | st               | vw             | VVW                                           | vvw. | VVW            |
| 21          | w ·              |                | vvw                                           | VAM. | vvw            |
| 23          | ₩                | _              | vvw                                           | vvw  | m_             |
| 25          | m <sup>+</sup>   | vw             | VW                                            | VW.  | m <sup>+</sup> |
| 27          | st               | m              | W                                             | m.   |                |
| 29          | m                | vw             | vvw                                           | vvw  |                |
| 31          | m.               | w              | vw                                            | vw   |                |
| 33          | vw               | <b>VVW</b>     | vvw                                           | vw   |                |
| 35          |                  |                | · —                                           | ļ    |                |
| 37          | $\mathbf{m}^{+}$ | m              | m                                             |      |                |
| 39          | vw               | w              | m                                             | ļ    |                |
| 41          | w                | w              | w <sup>+</sup>                                | 1    |                |
| 43          | ₩ <sup>+</sup>   | m              |                                               | ļ    | •              |
| 45          | m                | $\mathbf{m}^+$ |                                               |      |                |
| 47          | <u></u>          |                |                                               |      |                |
| 49          | st               |                |                                               |      |                |
| 51          |                  |                |                                               | ļ    |                |
|             | <u> </u>         |                | 1                                             |      |                |

Bi<sub>3</sub>NbTiO<sub>9</sub> and Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>. The positions of the heavy atoms might be expected to be: 2 Ba in 000, 4 Bi in  $\pm 00z_1$ , 4 Bi in  $\pm 00z_2$ .

The positions of the Ti and O atoms might be expected to be:

4 Ti in  $\pm 0.0z_3$ , 4 Ti in  $\pm 0.0z_4$ , 2 O in  $0.0\frac{1}{2}$ , 8 O in  $\pm (0\frac{1}{2}(\frac{1}{2}-z_3), \frac{1}{2}0(\frac{1}{2}-z_3))$ , 8 O in  $\pm (0\frac{1}{2}(\frac{1}{2}-z_4), \frac{1}{2}0(\frac{1}{2}-z_4))$ , 4 O in  $\pm 0.0(z_3+z_4)/2$ 4 O in  $\pm 0.0(z_3-(z_4-z_3)/2)$ , 4 O in  $0\frac{1}{2}\frac{1}{4}, \frac{1}{2}0\frac{1}{4}$  $z_1 \approx 1/9$   $z_2 \approx 2/9$   $z_3 \approx 0.350$   $z_4 \approx 0.450$ 

These atomic positions would give rise to high peaks in the Patterson-Harker plot at the same values as actually found. The calculated area ratios agree, however, with the observed ones only in as much as the biggest area is found for the peak at 1/9. The reasons might be an incorrect choice of the zero level and errors in the estimation of the intensities.

The parameters were varied around the above values for different positions of the Ba atoms: 2 Ba in 000,  $00z_1$  or  $00z_3$ , 2 Ba equally distributed over  $(000+00z_1)$ ,  $(000+00z_2)$ ,  $(00z_1+00z_3)$  or  $(000+00z_1+00z_2)$ . The best agreement seemed to be for  $z_1=0.106\pm0.001$ ,  $z_3=0.221\pm0.001$ ,  $z_3=0.352\pm0.004$ ,  $z_4=0.452\pm0.004$  with 2 Ba equally distributed over  $(000+00z_1+00z_2)$ 

#### B. AURIVILLIUS, Mixed oxides with layer lattices. III

Table 2
Weissenberg photographs of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>. Cu  $K_{\alpha}$  radiation  $I_{\rm calo.} = (2.5 \text{ F/f}_{\rm Bi})^{3}$ 

|                                                                                                    |                                             |                                                                                                                    |                                                      | Teste. — (2.0 Tright)                                                                                            |                                             |                                                                                               |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| ı                                                                                                  | I <sub>obs.</sub><br>101                    | Icalc.<br>101                                                                                                      | Iobs.<br>2 1 1                                       | Icalc.<br>2 1 1                                                                                                  | Iobs.<br>3 0 1                              | Icalc.<br>3 0 1                                                                               |  |  |  |  |  |  |  |
| 1                                                                                                  | m                                           | 73                                                                                                                 | . w                                                  | 90 7.3                                                                                                           | vw                                          | 94<br>8.4                                                                                     |  |  |  |  |  |  |  |
| 3                                                                                                  | VVW                                         | 5.8<br>4.8                                                                                                         | VVW                                                  | 5.8                                                                                                              | _                                           | 5.8                                                                                           |  |  |  |  |  |  |  |
| 5<br>7                                                                                             | vvw<br>w                                    | 30                                                                                                                 | vw                                                   | 31                                                                                                               | vvw                                         | 32                                                                                            |  |  |  |  |  |  |  |
| 9                                                                                                  | vst                                         | 620                                                                                                                | st                                                   | 610                                                                                                              | m                                           | 630                                                                                           |  |  |  |  |  |  |  |
| 11                                                                                                 |                                             | 13                                                                                                                 | · —                                                  | 12                                                                                                               |                                             | 14                                                                                            |  |  |  |  |  |  |  |
| 13                                                                                                 | w                                           | 25                                                                                                                 | <b> </b>                                             | 24                                                                                                               | l — i                                       | 24                                                                                            |  |  |  |  |  |  |  |
| 15                                                                                                 | w <sup>+</sup>                              | 62                                                                                                                 |                                                      | 60                                                                                                               | vvw                                         | 60                                                                                            |  |  |  |  |  |  |  |
| 17                                                                                                 | m                                           | 94 .                                                                                                               | vvw                                                  | 92                                                                                                               | VVW                                         | 90                                                                                            |  |  |  |  |  |  |  |
| 19                                                                                                 | st                                          | 160                                                                                                                | vw                                                   | 170                                                                                                              | vvw                                         | 170                                                                                           |  |  |  |  |  |  |  |
| 21                                                                                                 | w .                                         | 15                                                                                                                 |                                                      | 12                                                                                                               | VVW                                         | 12<br>18                                                                                      |  |  |  |  |  |  |  |
| 23                                                                                                 | w<br>m <sup>+</sup>                         | 19                                                                                                                 |                                                      | 18<br>120                                                                                                        | VVW<br>VW                                   | 120                                                                                           |  |  |  |  |  |  |  |
| 25<br>27                                                                                           |                                             | 120<br>320                                                                                                         | w<br>m                                               | 320                                                                                                              | w                                           | 320                                                                                           |  |  |  |  |  |  |  |
|                                                                                                    | st                                          |                                                                                                                    | 1                                                    | 1                                                                                                                |                                             | 44                                                                                            |  |  |  |  |  |  |  |
| 29                                                                                                 | m                                           | 45<br>180                                                                                                          | vw                                                   | 45<br>160                                                                                                        | VW VW                                       | 160                                                                                           |  |  |  |  |  |  |  |
| 31<br>33                                                                                           | m                                           | 160 <sup>-</sup><br>56                                                                                             | w<br>vvw                                             | 56                                                                                                               | VVW                                         | 56                                                                                            |  |  |  |  |  |  |  |
| 35 ·                                                                                               | vw                                          | 13                                                                                                                 | VV#                                                  | 12                                                                                                               | <u>'''</u>                                  | 12                                                                                            |  |  |  |  |  |  |  |
| 37                                                                                                 | m <sup>+</sup>                              | 300                                                                                                                | m                                                    | 300                                                                                                              | m.                                          | 300                                                                                           |  |  |  |  |  |  |  |
| 39                                                                                                 | vw                                          | 12                                                                                                                 | w                                                    | 13                                                                                                               |                                             | 13                                                                                            |  |  |  |  |  |  |  |
| 41                                                                                                 |                                             | 15                                                                                                                 | w                                                    | 14                                                                                                               | m<br>w <sup>+</sup>                         | 15                                                                                            |  |  |  |  |  |  |  |
| 43                                                                                                 | w<br>w <sup>+</sup>                         | 200                                                                                                                | m<br>m⁺                                              | 200                                                                                                              |                                             |                                                                                               |  |  |  |  |  |  |  |
| 45                                                                                                 | m                                           | 180                                                                                                                | m <sup>+</sup>                                       | 180                                                                                                              |                                             |                                                                                               |  |  |  |  |  |  |  |
| 47                                                                                                 |                                             | 18                                                                                                                 |                                                      | ,                                                                                                                |                                             |                                                                                               |  |  |  |  |  |  |  |
| 49                                                                                                 | st                                          | 250                                                                                                                |                                                      |                                                                                                                  |                                             | •                                                                                             |  |  |  |  |  |  |  |
| 51                                                                                                 |                                             | 3.6                                                                                                                | <del> </del>                                         |                                                                                                                  | <u></u>                                     |                                                                                               |  |  |  |  |  |  |  |
| ı                                                                                                  | Iobs.<br>0 0 1                              | Icalc.<br>0 0 1                                                                                                    | <i>I</i> obs.<br>111                                 | Icalc. 111                                                                                                       | Iobs.<br>2 2 1                              | Icale.<br>2 2 1                                                                               |  |  |  |  |  |  |  |
| 2                                                                                                  |                                             |                                                                                                                    |                                                      | 0.5                                                                                                              | vw                                          | 0.6                                                                                           |  |  |  |  |  |  |  |
| 4                                                                                                  |                                             |                                                                                                                    | · vw                                                 | 4.8                                                                                                              |                                             | 5.3                                                                                           |  |  |  |  |  |  |  |
| 6                                                                                                  | vw ·                                        | 21                                                                                                                 | w                                                    | 23                                                                                                               | vw                                          | 24                                                                                            |  |  |  |  |  |  |  |
| 8                                                                                                  | m.                                          | 110                                                                                                                | m.                                                   | 100                                                                                                              | ₩                                           | 110                                                                                           |  |  |  |  |  |  |  |
| 10                                                                                                 |                                             |                                                                                                                    |                                                      |                                                                                                                  |                                             |                                                                                               |  |  |  |  |  |  |  |
|                                                                                                    | m                                           | 62                                                                                                                 | st .                                                 | 280                                                                                                              | w                                           | 98                                                                                            |  |  |  |  |  |  |  |
| 12                                                                                                 | w                                           | 12                                                                                                                 | ∇V₩                                                  | 6.3                                                                                                              | w ·<br>vw                                   | 98<br>9.6                                                                                     |  |  |  |  |  |  |  |
| 14                                                                                                 | w<br>w                                      | 12<br>14                                                                                                           | ∨vw<br>w                                             | 6.3<br>16                                                                                                        | W VVW                                       | 98<br>9.6<br>14                                                                               |  |  |  |  |  |  |  |
| 14<br>16                                                                                           | w<br>w<br>st                                | 12<br>14<br>83                                                                                                     | vvw<br>w<br>m                                        | 6.3<br>16<br>79                                                                                                  | w<br>vw<br>vvw<br>m <sup>+</sup>            | 98<br>9.6<br>14<br>81                                                                         |  |  |  |  |  |  |  |
| 14<br>16<br>18                                                                                     | w<br>w<br>st<br>vst                         | 12<br>14<br>83<br>440                                                                                              | vvw<br>w<br>m<br>vst                                 | 6.3<br>16<br>79<br>480                                                                                           | w<br>vw<br>vvw<br>m <sup>+</sup><br>st      | 98<br>9.6<br>14<br>81<br>450                                                                  |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20                                                                               | w<br>w<br>st<br>vst<br>st                   | 12<br>14<br>83<br>440<br>170                                                                                       | vvw<br>w<br>m<br>vat<br>w                            | 6.3<br>16<br>79<br>480<br>36                                                                                     | w<br>vw<br>vvw<br>m <sup>+</sup><br>st<br>w | 98<br>9.6<br>14<br>81                                                                         |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22                                                                         | w<br>w<br>st<br>vst<br>st<br>m              | 12<br>14<br>83<br>440<br>170<br>100                                                                                | vvw<br>w<br>m<br>vst                                 | 6.3<br>16<br>79<br>480<br>36<br>79<br>86                                                                         | w<br>vw<br>vvw<br>m <sup>+</sup><br>st      | 98<br>9.6<br>14<br>81<br>450<br>120                                                           |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24                                                                   | w<br>w<br>st<br>vst<br>st                   | 12<br>14<br>83<br>440<br>170<br>100                                                                                | VVW<br>W<br>m<br>vat<br>W                            | 6.3<br>16<br>79<br>480<br>36<br>79<br>86                                                                         | w vw vvw m <sup>+</sup> st w vvw            | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78                                               |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26                                                             | w<br>w<br>st<br>vst<br>st<br>m+<br>w        | 12<br>14<br>83<br>440<br>170<br>100<br>81                                                                          | vvw<br>m<br>vst<br>w<br>vw<br>vw                     | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36                                                                   | w vw vvw m <sup>+</sup> st w vvw            | 98<br>9.6<br>14<br>81<br>450<br>120<br>92                                                     |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26                                                             | w w st vst st m w w                         | 12<br>14<br>83<br>440<br>170<br>100                                                                                | VVW<br>W<br>m<br>vat<br>W                            | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240                                                            | w vw vvw vvw w w                            | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4                           |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26                                                             | w<br>w<br>st<br>vst<br>st<br>m+<br>w        | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6                                                      | vvw<br>w<br>m<br>vst<br>w<br>vw<br>vw<br>m<br>m      | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20                                                | w vw vvw vvw w w                            | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12                     |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32                                           | w w st vst st m w w st                      | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11                                                | vvw<br>w<br>m<br>vst<br>w<br>vw<br>vw<br>m<br>m      | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20                                                | w vw vvw — w w m+                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140              |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34                                     | w w st vst st m w st w st w                 | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240                                  | vvw w vvst vw vw m m m m                             | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240                                  | w vw vvw vvw w w                            | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240       |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38                         | w w st vst st m w st w st vw                | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240                                  | vvw<br>w<br>m<br>vst<br>w<br>vw<br>vw<br>m<br>m<br>m | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240<br>35                            | w vw vvw w w w st                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240<br>21 |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40                   | w w st vst st m w st w st vvw st            | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240<br>19<br>380                     | vvw w w vst vw vw m m m m m w st                     | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240<br>35<br>280                     | w vw vvw — w w m+                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240       |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>88<br>40<br>42             | w w st vst st m w st w st vw                | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240<br>19<br>380<br>11               | vvw<br>w<br>m<br>vst<br>w<br>vw<br>vw<br>m<br>m<br>m | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240<br>35<br>280<br>22               | w vw vvw w w w st                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240<br>21 |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40<br>42<br>44       | w w st vst st m w st w st vv st vv st vv st | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240<br>19<br>380<br>11               | vvw w vst vw vw m m m m m w st vw                    | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240<br>240<br>25<br>280<br>22<br>4.8 | w vw vvw w w w st                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240<br>21 |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40<br>42<br>44<br>46 | w w st vst m w st w vv st vv n t            | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240<br>19<br>380<br>11<br>3.2<br>240 | vvw w vst vw vw m m m m m t vv st                    | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240<br>35<br>280<br>22<br>4.8<br>230 | w vw vvw w w w st                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240<br>21 |  |  |  |  |  |  |  |
| 14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40<br>42<br>44       | w w st vst st m w st w st vv st vv st vv st | 12<br>14<br>83<br>440<br>170<br>100<br>81<br>39<br>280<br>2.6<br>11<br>140<br>240<br>19<br>380<br>11               | vvw w vst vw vw m m m m m w st vw                    | 6.3<br>16<br>79<br>480<br>36<br>79<br>86<br>36<br>240<br>11<br>20<br>110<br>240<br>240<br>25<br>280<br>22<br>4.8 | w vw vvw w w w st                           | 98<br>9.6<br>14<br>81<br>450<br>120<br>92<br>78<br>39<br>280<br>1.4<br>12<br>140<br>240<br>21 |  |  |  |  |  |  |  |

| : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hkl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0010<br>101<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 0 9<br>1 1 0<br>0 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11 6<br>11 8<br>0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 1 10<br>1 0 15<br>0 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 0 17<br>2 0 0<br>1 0 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 1 16<br>2 0 8<br>{1 1 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 0 21<br>2 0 10<br>2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| \begin{pmatrix} \{2 & 1 & 1 \\ 2 & 1 & 3 \\ \{2 & 1 & 7 \\ \{1 & 1 & 20 \\ \{2 & 0 & 1 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \{2 & 0 & 1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 \\ \$1 |
| {2 0 14<br>2 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

 $00z_2$ ). Oth seen the thr following M over the po From Tal  $\approx I_{22l} \approx I_4$  be expected 00z,  $\frac{1}{2}$   $\frac{1}{2}z$ , for the rows senberg phothe observed more clearly ≥ 3039. Th the z parame structure fac are 222:22. reflexions the be introduced the agreemen

calc.

0.6

5.3

:80 1.4

.40

:40

9.8  ARKIV FÖR KEMI. Bd 2 nr 37

Table 3

Powder photographs of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> Cr  $K_{\alpha}$  radiation.

| آ | h k l          | $10^4$ $\sin^2 \theta$ calc. | $10^4$ $\sin^2 \theta$ obs. | Iobs.           | hkl          | 10 <sup>4</sup><br>sin <sup>2</sup> θ calc. | I0 <sup>4</sup><br>sin <sup>2</sup> θobs. | Iobs.    |
|---|----------------|------------------------------|-----------------------------|-----------------|--------------|---------------------------------------------|-------------------------------------------|----------|
| - |                |                              |                             |                 |              | 1                                           |                                           |          |
| 1 | 0010           | 753                          | 745                         | w               | 2016         | 5443                                        | 5440                                      | VW       |
| ı | 10 1           | 887                          | 878                         | m               | 1025         | 5582                                        | 5581                                      | w        |
| ı | 10 5           | 1067                         | 1058                        | vw              | 2113         | 5667                                        | 5669                                      | ∇VW      |
| 1 | 10 9           | 1489                         | 1481                        | st              | 0028         | 5900                                        | 5892                                      | vw       |
| Ĺ | 11 0           | 1758                         | 1751                        | m               | 2018         | 5954                                        | 5960                                      | m.       |
| ı | 0016           | 1927                         | 1915                        | vvw             | <b>∫2115</b> | 6088                                        | 6089                                      |          |
| 1 | 11 6           | 2031                         | 2018                        | vw              | 11124        | 6093                                        | 0088                                      | VW       |
| ١ | 11 8           | 2240                         | 2236                        | vw              | 1027         | 6365                                        | 6364                                      | m        |
| - |                |                              | 2423.                       | m_              | 2 0 20       | 6526                                        | 6529                                      | vw broad |
| 1 | 0018           | 2438<br>2511                 | 2504                        | m.+             | (220         | 7032                                        |                                           | 1        |
|   | 1 1 10         |                              | 2567 ·                      | vvw             | 222          | 7064                                        | 7070                                      | w broad  |
| L | 1 0 15         | 2572                         | 1 -                         | VVW<br>W        | 2 1 19       | 7112                                        |                                           |          |
| i | 0 0 20         | 3010                         | 2992                        |                 | 130 5        | 8099                                        |                                           |          |
| ı | 1017           | 3054                         | 3051                        | W               | 1031         | 8111                                        | 8104                                      | VVW      |
| l | 200            | 3516                         | 3514                        | w <sup>+</sup>  | 2214         | 8114                                        | 0                                         |          |
| 1 | 1 0 19         | 3596                         | 3600                        |                 | 2 1 23       | 8376                                        | 8365                                      | VW       |
| Ì | 1 1 16         | 3685                         | 3681                        | w               | (2214        | 8507                                        | 0000                                      |          |
|   | 208            | 3998                         | 3996                        | vw              | 30 9         | 8521                                        | 8520                                      | m        |
| 1 | <b>∫1 1 18</b> | 4196                         | 4186                        | m               | 11130        | 8531                                        | 0020                                      | ]        |
| l | 1021           | 4198                         | ł                           |                 | 310          | 8802                                        |                                           |          |
|   | 2010           | 4269                         | 4265                        | w               | 3011         | 8812                                        | 8802                                      | m.       |
| 1 | <i>[</i> 211   | 4403                         | 4402                        | vw              | 31 2         | 8820                                        | 0002                                      |          |
|   | 1213           | 4418                         | 1                           | ,               | 1033         | 9074                                        |                                           | _        |
| ı | ∫21 7          | 4764                         | 4774                        | vw              | 2 1 25       | 9098                                        | 9092                                      | w broad  |
| 1 | 11 1 20        | 4768                         | ±.,±                        | '"              |              |                                             |                                           | 1        |
| l | . \$2014       | 4991                         | 5009                        | m <sup>+.</sup> | 11132        | 9464                                        | 9484                                      | w broad  |
| ı | 121 9          | 5005                         | 1.                          |                 | {2 2 18      | 9470                                        | [                                         | Į.       |

 $00z_2$ ). Other distributions of Ba should, however, not be excluded; as will be seen the three dimensional Fourier cut along 00z (see Fig. 3) seems to favour the following Me arrangement:  $4 \text{ Bi } \pm 00z_2$  and (2 Ba + 4 Bi) equally distributed over the positions 000 and  $\pm 00z_1$ .

From Table 1 it is seen that roughly for the same value of l:  $I_{00l} \approx I_{20l} \approx I_{22l} \approx I_{40l}$ ,  $I_{11l} \approx I_{31l} \approx I_{33l}$ ,  $I_{10l} \approx I_{21l} \approx I_{30l} \approx I_{32l} \approx I_{41l}$  as might be expected from the above atomic positions with atoms only on the lines 00z,  $\frac{1}{2}$ ,  $\frac{1}{2}z$ , 0,  $\frac{1}{2}z$  and  $\frac{1}{2}0z$ . Table 2 gives calculated and observed intensities for the rows 00l, 10l, 11l, 21l, 22l and 30l. It was found from the Weissenberg photographs that 0028 > 0030 and 1037 > 1039 (see Table 2) but the observed ratios do not seem to be as large as those calculated. This is more clearly seen for the rows 40l and 30l where 4028 < 4030 and  $3037 \ge 3039$ . These discrepancies could neither be removed by small variations in the z parameters nor by assuming other discrepancies found from Tables 1 and 2 are 222:224, 332:334, 0050:0052 and 1148:1152. However, for most reflexions the agreement is quite good and considering the errors which might be introduced by absorption effects and errors in the ratios  $f_{Tl}/f_{Bl}$  and  $f_0/f_{Bl}$  the agreement might on the whole be classified as fairly good.

# B. AURIVILLIUS, Mixed oxides with layer lattices. III



● Ba Bi O 0 • Ti

Fig. 4. One half of the unit cell of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>. A denotes the perowskitic region and B the Me<sub>2</sub>O<sub>2</sub> layers.

The following structure is therefore proposed:  $D_{44}^{17} - I4/mmm$  (000,  $\frac{1}{2}\frac{1}{2}\frac{1}{2}$ ) +

2 Me<sub>1</sub> in 2 (a) 000 2 O<sub>1</sub> in 2 (b) 00 $\frac{1}{2}$ 8 O<sub>2</sub> in 8 (g) 0 $\frac{1}{2}z$ ; 0 $\frac{1}{2}\bar{z}$ ;  $\frac{1}{2}$ 0z;  $\frac{1}{2}$ 0 $\bar{z}$  z = 0.048 4 Ti<sub>1</sub> in 4 (e) 00z; 00 $\bar{z}$  z = 0.452 4 O<sub>3</sub> in 4 (e) z = 0.402

526

## BEST AVAILABLE COPY

Ba aı

If 1 the st ½ ½ 0; ½ ½ z; 8 (i) z 8 Me<sub>2</sub>

The

 $0_1 - \{$   $0_3 - \{$  $0_3 - \{$ 

05-4

One h:

I wi

Stoc.

REF. 499. — G., Dis. N:o 20,

ARKIV FÖR KEMI. Bd 2 nr 37

4 Me<sub>2</sub> in 4 (e) 
$$z = 0.106$$
  
8 O<sub>4</sub> in 8 (g)  $z = 0.148$   
4 Ti<sub>2</sub> in 4 (e)  $z = 0.352$   
4 O<sub>5</sub> in 4 (e)  $z = 0.302$   
4 Me<sub>3</sub> in 4 (e)  $z = 0.221$   
4 O<sub>6</sub> in 4 (d) O ½ ½; ½ O ½

Ba and Bi equally distributed over all Me positions.

If the structure is described by means of an orthorhombic space group  $(D_{2k}^{23})$ , as used for the structures of  $Bi_3NbTiO_9$  and  $Bi_4Ti_3O_{12}$ , the positions will be:  $D_{2k}^{23} - F \ m \ m \ m \ (0.00; \frac{1}{2}\frac{1}{2}0; 0\frac{1}{2}\frac{1}{2}; \frac{1}{2}0\frac{1}{3}) + 4 \ Me_1 \ \text{in} \ 4 \ (a) \ 0.00, \ 4 \ O_1 \ \text{in} \ 4 \ (b) \ 0.0\frac{1}{2}, \ 16 \ O_2 \ \text{in} \ 16 \ (j) \ \frac{1}{4}\frac{1}{4}z; \ \frac{1}{4}\frac{1}{2}\overline{z}; \frac{1}{4}\frac{1}{2}\overline{z}; z = 0.048, \ 8 \ Ti_1 \ \text{in} \ 8 \ (i) \ 0.0z; \ 0.0\overline{z} \ z = 0.452, \ 8 \ O_3 \ \text{in} \ 8 \ (i) \ z = 0.402, \ 8 \ Me_3 \ \text{in} \ 8 \ (i) \ z = 0.106, \ 16 \ O_4 \ \text{in} \ 16 \ (j) \ z = 0.148, \ 8 \ Ti_2 \ \text{in} \ 8 \ (i) \ z = 0.352, \ 8 \ O_5 \ \text{in} \ 8 \ (i) \ z = 0.302, \ 8 \ Me_2 \ \text{in} \ 8 \ (i) \ z = 0.221, \ 8 \ O_6 \ \text{in} \ 8 \ (f) \ \frac{1}{4}\frac{1}{4}\frac{1}{4}; \ \frac{1}{4}\frac{1}{4}\frac{8}{4}.$ 

The distances (A) and coordination will be:

One half of the unit cell is shown in Fig. 4.

I wish to thank Professor L. G. Sillen for valuable discussions on this work.

Stockholms Högskola, Institute of Inorganic and Physical Chemistry. May 1950.

REFERENCES. 1. Aurivillius, B., Arkiv Kemi 1 (1950) 463. — 2. —, Ibid, 1 (1950) 499. — 3. Bannister, F. A. and Hey, M. H., Miner. Mag. 24. (1935) 49. — 4. Sillén, L. G., Dissert., Stockholm 1940. — 5. Lagercrantz, Å. and Sillén, L. G., Arkiv Kemi 25 N:o 20, 1948. — 6. Wells, A. F., Z. Krist. 96 (1937) 451.

Tryckt den 14 oktober 1950

Uppsala 1950. Almqvist & Wiksells Boktryckeri AB

527

n and